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Abstract—The system of partial differential equations, together with their boundary conditions, has been
established to describe the performance of regenerators subjected to cycling flows, including commonly
neglected effects such as internal energy changes of the fluid due to pressure cycling and longitudinal matrix
conduction. Exact solutions are obtained for the case of an infinitely large matrix heat capacity. For the case
of finite matrix heat capacity the method of perturbations is employed, and the solutions can be considered
exact throughout the regenerator except for the regions near the boundaries. In general, the results are
contained in a set of three coupled ordinary differential equations, which must be solved numerically. For
the important case of negligible matrix heat conduction, however, a closed-form solution is presented here.
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NOMENCLATURE

regenerator cross-section;

specific heat of matrix material;
constant defined in equation (58);
parameter defined in equation (10);
integration constant;
gas enthalpy;

heat transfer coefficient;
non-dimensional heat
efficient, equation (10);
thermal conductivity;
heat transfer coefficient at cold end;
parameter defined by equation (10);
regenerator length;

non-dimensional mass flux;

mass flux;

incomplete gamma function, equation
(67);

exponents for heat transfer coefficient;
gas pressure;

non-dimensional gas pressure;

Prandtl number;

integrated mass flux at cold end;
parameter defined by equation (10);
gas constant;

Reynolds number;

Stanton number;

time;

first order temperature perturbation;
temperature;

internal energy;

regenerator void volume, cAl;
expansion volume outside cold end;
average gas velocity;

axial distance;

non-dimensional distance;

transfer co-
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o, specific surface;

B, constant defined in equation (66);

P, ratio of specific heats;

d, non-dimensional length of compression
period;

€, regenerator porosity;

”, regenerator effectiveness;

0, non-dimensional time;

39, second order temperature perturbation;

v, constant defined in equation (66);

T, time span of regenerator cycle;

P, density;

T, non-dimensional temperature.

Subscripts

m, matrix;

0,1l values at cold end (x=0), hot end (x=1);

HL, values at end of compression (high
pressure), and of expansion (low pres-
sure).

Superscript

- (bar) integrated value over cycle.

1. INTRODUCTION

SINCE the first thermal regenerator was applied to the
production of low temperatures at the end of last
century, their use has become more popular. Due to
their superior effectiveness and compactness compared
to the conventional heat exchangers, they constitute
the crucial elements in modern refrigeration devices
used for the cooling of superconductors, infrared de-
tectors, etc. While the concept of thermal regenerators
is simple, the theory pertaining to the thermal
performance is extraordinarily involved. Since the
efficiency of a well designed regenerator is high
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compared to the efficiency of the total refrigeration
cycle, littie effort had been made until recently to
predict its performance accurately. At very low
low temperatures, however, the refrigeration cycles
become so ineffective that losses due to the regenerator
must be minimized. With the increasing application
of refrigeration at very low temperatures, more effort
has been devoted to the study of sophisticated theories
by various investigators, for example [1-47. All these
investigations. however, are limited to the examination
of one particular effect or another, neglecting other
important factors.

A notable advance towards a rigorous theory has
been made by Rea and Smith [5], improving earlier
analyses by taking proper account of variable
density, mass flux and heat transfer coefficient.
Recently this theory has been extended by Modest
and Tien {6] to include real-gas and matrix-conduc-
tion effects, which become particularly important at
very low temperatures. The major shortcomings of
these analyses are their approximate nature and the
fact that they deal only with time-averaged properties.
It is the purpose of this work to improve thesc
analyses by presenting some exact analytical solutions
to the governing equations. These solutions not only
show in what situations the approximate analyses
are applicable, but also provide some physical
insight into the variation of temperatures and mass
flux with time.

2. GOVERNING EQUATIONS

For the development of the governing equations
the following basic assumptions are made: {1} The
gas behaves like an ideal gas, (2) Pressure drop along
the regenerator is negligibly small, (3) Thermal
conduction through the gas in axial direction is
negligible, and (4) Wall effects and matrix inhomo-
genuity are insignificant (i.e. the problem is one-
dimensional). Under these conditions the governing
equations are [3, 6]

Gas energy:

¢ 0 2
— i ) = — = 1
% (pu) + o (pwh) + . h(T -~ T, =0 8]
Matrix energy:
Su &
P a("

Gas continuity:

eT %
Zmy T — = 2
- ﬁx) T BT~ T)=0 {2

—ow) + L= 0. (3)

The first terms in equations {1) and (2) describe the
change of internal energy of gas and matrix. The
second term in equation (1) stands for the change of
enthalpy of the gas flowing through the control
volume. while the second term in equation {2) denotes
the conduction along the matrix. The last terms in both
equations give the convective energy exchange
between gas and matrix inside the control volume.

In general. the mass flux can be calculated at the
cold end (x = 0) and the temperatures of the gas
entering the matrix are known, so that the boundary
conditions are:

cold end x = O:
m{0. 1y = e Apw(Q, £} = mr (6)

T(0.r) = T, = constant during expansion

{4}
hotend x = i:
T(L.t) = T, = constant during compression.
Furthermore, for a steady cyclic regenerator
olx, 1) = Plx,t + 1) 5

where ¢ stands for any dependent variable and =
denotes the time span of a full cycle. It is obvious from
equation (2) that the system requires two additional
boundary conditions in T, They can be easily
estimated, however. Also, it will be shown later how
they can be conveniently eliminated without any
significant loss of accuracy.

The following dimensionless variables will now
be introduced:

T T m W

= e = -
TR T T, T (g dr
"3,
and
Apy — IV, x r )
oL L ) 6
mynRT, 1 i (o)

For an ideal gas equations (1) to (3) reduce then to [6]:
Gas energy:

~
VAP )+ Hz e — 21 =0 ()
»df @z ”

Matrix energy:

ét, 0 0tm\ _ _
0% - LK 52) — HEOE - ) =0 ®

Gas continuity:
cm  1dP

DA - {9
fz 108 0
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where
0,=r"11=¢ Putalo
" Y € 2py —p)
y—11—¢ =wk T,

K = s m 0 __ ;2 10
"= Mo pyr 19
y—1a T ,K h h

H= 2T o 2

y €2pg—-p)K 'K

In equation (9) the assumption has been invoked that

2(Py_1aP_Pa _1dp
0\<) tdd <200~ 7do
where 7 is the gas temperature integrated over a full
cycle. A simple order-of-magnitude test shows that

this simplification is justified because

1dP/P61~AP_ T T
TW|FBETP M A
and for a highly effective regenerator the temperature
swing of the gas in time is very small compared to the
absolute temperature. However, during a short
interval right after flow reversal, dP/df ~ 0 and
dt/00 # 0, so that equation (11) becomes invalid at
this instant. This is the reason for the singularity that
appears in the solutions for the gas temperature 7 at
times of flow reversal (cf. equations (25) and (40)).

The heat transfer coefficient is usually correlated
by [1]

St Pr* = aRe"

or
b, = K |m|mo

where (12)

Kk ——
K= aEO(ReO)"‘Pr*, n=1+n
h

The subscript “0” refers to conditions at the cold end,
while the term 1™ accounts for the temperature
dependence of the heat transfer coefficient. The values
for the constants @ and n depend on the matrix and
can be found in the literature. For example, Rea and
Smith 5] listed a = 071 and n = —041 for a bed
of spheres. It is obvious that equation (12) is an
approximation since the exact relationship for the
time dependence of h, for a fast cycling flow is not
known and cannot correlate the heat transfer co-
efficient accurately for all situations (e.g. at flow
reversal 1 = O but h, > 0). The correlation for h, can
therefore be adjusted slightly into a more convenient

form without any loss of generality. Let

B, = Km™"= 127" |m|, (13)
so that
H(z, 0) = C,m™ i |m| = I_f(z)l—g—l (14)
where the average values 7 and 7 are defined by
m=¢/m|dd and T=¢rdo. (15)

Equations (7)~9) with H{(z, 0) defined by equation (14)
form the system of equations that will be investigated
in the following. The pertinent boundary conditions
are:

coldend z = 0:
m(O, 0) = mo(o) = mo(g)/';’o
70, =1, 6<06<1

(16)
hotend z = z;:

Wz, 0) =1, 0K60<4

where 0 is the fraction of n during which the gas is
compressed (gas flows from hot to cold end)and (1 — 6)
is the expansion interval (gas flows from cold to hot
end). Here the further assumption has been made that
flow reversal occurs everywhere in the regenerator at
the same instant. This follows readily from equations
(7) and (9) in conjunction with the definition for the
heat transfer coefficient H(z, 6) and the assumption
for negligible pressure drop.

It is customary to characterize the regenerator
performance by its ineffectiveness defined as

, __ total losses over one cycle
T = " {deal heat exchange

Losses are due to conduction and the fact that the
gas temperature oscillates around the matrix tem-
perature. Thus

-7
|$rmhdt| + (1 — ) A§k (9T, /0x)dt
= én £ [3 (17)
f‘; |yt — ﬁf |ty [ hodt — [ed, | pudx]gF
This expression can be simplified to
d
| —p= 2[§mt 8] + §Km(6rm/6z)d0' (18)

mt, —1—z/y

3. SOLUTIONS
In the following four different cases are investigated.
The first two deal with an infinitely large matrix heat
capacity (Q, — co), first with a particularly simple
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boundary condition for the mass flux at the cold end,
m,. and then with the general case. These results are
cxact solutions to the slightly simplified equations
(71(9). The last two cases treat the finite heat capacity
problem (Q, < =) first without and then with
longitudinal matrix conduction. These results are
obtained by the method of perturbations, and can be
considered exact throughout the regenerator with the
exception of the regions near the boundaries. Through-
out the analysis it has been assumed that @ = 0 (1)
and K= K (7,) only. Furthermore. the ratio of
specific heats. 7, was treated as constant, although the
theory is easily extended to a variable 5.

In general, the analyses result in a set of three
coupled ordinary differential equations which must
be solved numerically. It will be seen, however, that
a closed-form solution is possible if conduction is
negligible and if the heat transfer coefficient is
independent of temperature. Both assumptions appear
1o be reasonable for many practical applications.

Infinite matrix heat capacity

In many regenerator applications. a gas with a
relatively small heat capacity flows through a matrix
of very large capacity, resulting in a large value for the
parameter Q, in equation (8). In this case the matrix
absorbs the energy transferred to it by the gas easily
without any significant temperature change. In the
ideal case of an infinitely large heat capacity (¢, — )
the matrix temperature becomes independent of time

so that 1, = 1,(z) only, and equation (8) must be
replaced by its cyclic integral

. d d

§ H( —x,)d0 + - (KMdi)_oi (19)

It is advantageous to replace the variables m and
7 by m, %, and t, where the perturbation term f is
defined as

1(z.0) = T(z) + t(z, O). (20)

It follows from the definition of T that
# rdf) =

To relate m to m consider continuity equation (9).
Integration resuits in

2n

=t

=1 (22}

E“!Q“

T

and
dP) _dP 5
— | = M 23
)~ "an 23)
A particular simple situation arises if the mass flux
at the cold end is such that m, = —dP/df. In reality.
of course, this will not necessarily be the case. However,
if the volume outside the cold end of the regenerator

m(z, ) = (m0 -+

N

iIs constant it obviously represents an excellent
approximation as is easily seen from

d 14
W, = — ar {p }( (24)

where the subscript CE denotes properties in the
volume outside the cold end of the regenerator. Even
for the general case, both functions have some common
features indicating that they are similar to some degree.
From the assumption of negligible pressure drop and
equation (9) it follows that flow reversal occurs
everywhere at the same instant, i.e. my = —dP/d0 = 0
at times of flow reversal (6 = 0, §, 1). Between those
times both functions grow in absolute value to some
maximum and then diminish again. Furthermore,
from equation (23), their integrated values (zeroth
moments) are identical, i.e.

1

g R
o= [ = o < (0=

0 5 5 5
In the following the solution for this simple case is
presented. [t will be shown later that this result is
easily extended for m, # —dP/d6.

If the matrix temperature is constant in time, only
changes in mass flux and pressure can cause variation
in gas temperature. If i and p vary at the same rate,
the temperature difference between gas and matrix
will be constant at any location during compression
and expansion intervals, provided the heat transfer
coefficient is of the form of equation {13). Then the
solution for 7 will have the form

t(z,0) = ©(z) + t,(2) 0<t<d

(25)

©z.0) = z) ~ 1,(2) 0 < < 1.

It is obvious that a step in gas temperature at times of
flow reversal is physically impossible. The reason for
the introduction of this singular point is. of course,
the assumption made for equation (9). Introducing
(25) reduces equations (7) and (19) to

- ; dr_\
L L 1)1(,( dry )

¥ dz dz md:
- clm"l—lf"{c —-Km%t—il (26)
L Gy PP aic”
(26 — 1){—}' + m&} 45(1 = &) (\Km =

— e (i —1,) (27

20t = 2(1 —o)t,

i dr,, )
=451 - 5)ﬁ[ - K, '&} (28)
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where C, is an integration constant to be determined
by the boundary conditions. Usually C, » 1 and
|26 — 1] <1, so that the second-order term in
equation (26) can be dropped. Furthermore, in a
highly efficient regenerator [T —1,|<1 or
dr J/dz = di/dz. Then

'Y - l m dT Pred Bl 1'7‘2 p— Eli
szaucm T [Cz K’"dz]
which, coupled with equation (22), must in general
be solved numerically, subject to the boundary
conditions

cold end z = 0:

(29)

(30)

hot end z = z;:
- dz
fTmg—tf=1-2 -4 Cz-—KmaE. (32)

Thus the solution for 7, has been decoupled from the
solution for 7 and 7. Once T and 7 are known, 7, is
readily calculated from equation (25). Again the
derivative in t,, can be replaced by a derivative in 7,
thus avoiding to estimate boundary conditions for
the matrix temperature.

The regenerator ineffectiveness follows from equa-
tion (18) to be

2c,

s B, 33
T, — 1 - zfy (33)

1l —n=

If m, # —dP/d6 the solution is similar. A second
perturbation term ¥z, 8) is added to equation (25)
so that

7z, 0) = T(z) + t,(2) + ¥z, 0)
7{z,0) = T{z) ~ t,{2) + Hz, 6)

where H(z)=§(zr — HdO =7 — 3 As |$] <7 one
can replace T by ¥ in equations (9) and (13). Equations
(22), (23) and (26)~(33) then continue to hold (with 7'
instead of 7), while 3 turns out to be

i dP\ | -
(oo ferd

X [1:—-}- + f:f-] g,
Y Tm
(33)

z
3z, 6) = (1 + T%}jexp{— jclﬁ“"‘f’“di}
m
o o

0<b<é
d<b<l

(34

Kz, 8 =

0<bf<d

d<b <l

—1
x [_Y
y

2 | A7
¥ lm
Finite matrix heat capacity
In many applications, the matrix heat capacity is
not large enough to render the matrix temperature 1,
a function of position only, ie. the temperature
fluctuation of the matrix is such that it cannot be
neglected. It is, therefore, of importance to determine
how the results of the preceding section are affected
by a finite Q,. First the somewhat simpler case of
negligible matrix heat conduction will be treated.
These results will then later be extended to include
conduction effects.
For the analysis, the temperatures will be broken
up according to equation {20), so that
(2, 0) = (z) + t{z, 0) 20
and
1,(z, 0) = T,(z} + 1 (z,0). (36)

With this definition and K, = 0 equations (7) and (8)
can be written as

1 dP -
L+ 0,5 = €y
and
ot oy 1 = - .
2, 69—Cm"‘ e m|@ -1, +t—1t)=0 (39)

where the term d(mt)/dz in equation (37) has been
dropped as it is small compared to 8(m?)/0z. However,
neglecting this term reduces the order of ¢. Therefore,
while equations (37) and (38) describe the regenerator
performance accurately throughout the interior of
the regenerator, this might not be true very close to
the boundaries, as the fluctuation boundary condition
for ¢ cannot be satisfied.
The solutions to this system of equations are:

d

mie 6) = 3 - m% 23)

y—~1 _di}P~-P dig-g
tm(Z,e}—{T-Pma;} Qm "a—;“g—’;— 39

w0 = {11 ‘mg}{f’g‘p ‘;‘:‘f‘;‘}
m 2

g p-1(1ds (T

&0, Ty {Imld (smtde)} (40
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where the abbreviation

0
dP
§) = do
q(0) J(mo d0>
4}

has been used. The upper sign in equation (40) is valid
during compression (0 < § < ), the lower sign during
expansion (6 < 6 < 1). The averaged properties must
be found from the ordinary differential equations

Tt =1 (22)
L
¥ dz ! ‘
' — 1(m P)
o
(26 — 1){5~1 + mg}
y dz
= C Mt — 1 _}J—l 1%
= Clm (T z,.) ; (lmld@ (42)
subject to the boundary conditions
cold end z = 0:
=1 (43)
1
_ 1
T=1-—- — jtd(]
1—-90
]
— 1(m,P)
~ 1+ 25[C2 + (m—Q(’«)} (44)
14 -

hotend z = z
]

f=1,—éjtd0;rl—2(l—5)

)
' — 1(m,P)
x [CZ n L#@l—)]. (45)
v QO
For the evaluation of the regenerator effectiveness
equation (33) remains valid.
To include the effects of matrix conduction, the
approach is similar to the one described earlier.
Equations (20) and (36) are redefined as

1(z,0) = Hz) + t(z,0) + Hz. 0) (46)
(2 0) = T (2) + (2 0) + 8,0, (4]

Here ¢ and t, have been evaluated above and describe
the major perturbations of T and 7, caused by mass
flux and pressure variations, and the 9 and 3 are
minor perturbations due to matrix conduction effects.

Thus from comparing equation (7) with (37) and (8)
with (38), respectively:

d dz )
Sow 0, e a‘z(chT) =0
and
69 C —n1— 1302 l(s -9 )
Q.. 0 m ™ im 3,
d( d7
—_— __m = 4
dz \K’" ds ) 0 (“49)

where the terms d(m9)/¢z and é(t, + Y, )/Cz have
been neglected, as they are anticipated to be small
compared to ¢/0z(mt) and d7,_ /dz.

The results are

, L (d -
Sl 0) = 5 {82 (m1)

m

0 [}

R
(0 -4 — é([ mt do —%ﬁ (mt do d())} (50}
J /

)

1 m ¢
C 7T |m) &z

9z = 9 (2.0) — ~(m, (51

while equations (41) and (42) must be replaced by

v =1 dt
*j/‘;f + mag = C,m"m '
‘ dt, 7 — LimyP) R
x {C K g f’ 3 } (52)

and

(20 — 1){11_}{ + mgg} = C T ~ %)

y—1(1 dq oo > ‘
e = (mt 53
: (!mlde ) Y
subject to the boundary conditions
cold end z = 0:
m=1 (54)
1
T~1— T*”A(S i\(t + vg)dg
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hotend z = z:
3
-—%f(t+-9)d0;1—2(1-6)

0

di,  y— 1(m,P)
X [cz ~ K, 3"+ —y-——é’m ] (56)

Again d7,/dz can be approximated by di/dz in
equation (52) in order to decouple equation (53) from
equations (22) and (52). The average temperature of
the matrix, 7,, can then be calculated from equation
(53), although the calculation of the last two terms in
that equation will be rather tedious. However, a
simple order-of-magnitude test reveals that

1 dqg

Furthermore, if dg/d6 = 0, the last term reduces to

m 0 d dz,
<| 15 (mt)) —45(1 — 5)&<Km H?) (57

if the pressure is such that the average pressures for
both half-cycles are equal. Using this, equation (53)
reduces to equation (27).

Again, the expression for the regenerator ineffective-
ness does not change, so that equation (33) remains
valid also for this case.

Al
2

Explicit analytical solution for negligible conduction

It has been shown how the partial differential
equations governing the performance of thermal
regenerators can be reduced to ordinary differential
equations. In general, these equations are still so
complex that they can only be solved numerically.
There exists, however, an important special case when
an explicit analytical solution is possible. This is the
case if longitudinal matrix conduction, as well as the
temperature dependence of the heat transfer co-
efficient, is negligible, ie. if K = n, =0, which is
approximately true for moderate temperatures.

Consider equations (26) or (41). If K, =~ 0 and
" = 1 they can be rewritten as

y—1 _dr
+m rr Cm (58)
where
n=n;,—1 and C=CC,
or
l(m P)}
c, + 1= ,
{ O

assuming that under these conditions also the matrix
heat capacity can be treated as constant. This equation
must be solved in combination with

‘;'Z" 1 (22)
subject to the boundary conditions
coldend z = 0:
m=1
s (59)
hotend z = z;:
T=1

I

which have been simplified by dropping the small
terms for the sake of clarity.

The axial distance is easily eliminated from equa-
tions (22) and (58) to yield

F=m "D exp {%(1 - m")} n£0  (60)
T =mC- by

n=0. (61)

With this expression equation (22) can be solved for
the average mass flux m and gas temperature 7 as
functions of longitudinal distance z to give

m—{ﬁ TMB) — npt 'ﬁz]} n%0 (62

(y—1)/ny

f= L - et}

x exp {f — M [M(B) — nf' > e~*2]}

n#0 (63)
and
[
m:{l [C+1— 1] }C+1~w—1)/7
Y
n=20 (64)
C—(y—1)fy
— YCH1-(y— 1)y
{ie e T
Y
n=0. (65)

Here the abbreviations § and v have been introduced
as

= —C/n and ly=-1,n-1

(66)
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while the incomplete gamma function M (f)has been
defined to be

M (p) = f n e "dn. (67)
]

In equations (62)—(65) the first two boundary condi-
tions have been employed. The last one is needed to
evaluate the constant § (or C, C,), which must be
done by trial and error. While some tabulations of the
incomplete gamma functions can be found in the
literature [7], an extensive listing for values of v
relevant for regenerator applications has also been

given [8].

Comparison with exact solution

A computer program for the exact numerical
solution of the general equations (1)~(3) without the
simplifications (11) and (13) has been developed to
test the theories presented in the previous sections.
In particular, it will be seen what influence the
omission of the term [(P/?)(d1/60)] in equation (9)
exerts on the solution, and whether, for finite Q_,
dropping d(mt)/0z in equation (37) really only affects
the regions close to the boundaries.

Due to the extremely unfavorable boundary condi-
tions, only few approaches to a numerical solution are
conceivable. The one employed here approximates
time derivatives by backward differences, while
directional derivatives are written as forward differ-
ences during compression (0 < € < J) and backward
differences during expansion (6 < 6 < 1). An initial
distribution of temperatures and mass flow is guessed
for a certain time (for example, by the methods
described earlier in this paper) and new values are
calculated time step after time step. Physically this
method calculates the cool-down of the generator
from the initial (or approximate) temperature dis-
tribution until the quasi-steady state is reached.
Obviously, a accurate initial distribution is crucial.
Usually, the cool-down time for a compact refrigerator
operating according to the Stirling or Gifford-
McMahon cycles is about one to two hours. Thus,
if an accurate initial profile is employed, cool-down
time can be expected to be of the order of a few
minutes. Therefore, a few hundred iterations will
usually be necessary, and somewhere between 1 and 5
min of computer time will be needed, even with a
high-speed computer like the CDC 6400, which was
used here at Berekeley.

To test the previously derived theories this com-

puter program was employed for the special case of

dp

de

6:%’ Km=0 and m0=

with

and 17, = 5.

C,=0,=100. z,=1
Two different pressure histories were investigated:
(i) linear (“saw-tooth™:
P=P +0. 0<0<}
P=P +(1-0 ‘<0<t
(i1) sinusoidal:
P=P+lcos2r, 0<0< 1.

If the average values i and T = 7, are evaluated from
equations (22) and (41), it was found that they
practically coincide with the ones found by the
numerical solution (deviation <§ per cent). Figures
1-3 demonstrate how equations (39) and (40) compare
to the exact numerical solution for case (i), Figs. 4-6
for case (ii).

First consider Fig. 1, which depicts the cold end
(z = 0) for case (i). As expected, agreement is not too
good during expansion as the boundary condition for
t had been neglected in the analysis. However,
agreement for the compression half-cycle is excellent.
This figure also demonstrates how the singularity in
equation (40) which was introduced by neglecting
[(P/t?)(8t/¢0)], is overcome by the numerical solu-
tion. To show how minute the influence of the neglected
boundary condition is, the temperature histories have
been plotted for a point inside the matrix-—but still
close to the boundary—at x/l = 0-1. Figure 2 shows
the excellent agreement between theory and exact
solution, the only deviation being at times close to
flow reversal. The same is true for all other locations
throughout the regenerator. Figure 3 shows the time
history of the mass flow at the location x/I = 0-1.
Obviously, what has been said about the temperatures
is also true for the mass flow.

Now consider Fig. 4, depicting time histories at
the cold end for case (ii). While agreement for the
matrix temperature is fairly good, this is not true for
the gas temperature (except for the fact that values
integrated over half-cycles more or less coincide.
ensuring agreement for the solution of average
properties). The reason for this deviation is that
different definitions for the heat transfer coefficient
have been used. To prove this, introduce the original
definition for h, in equation (38). Then

E[m P e P dar
Qm ;ﬁ - Clm T a'—

ny

(t—1)=0 (68)

—dP/df have been used. Thus

Hz,0) = 1,(2,0) + E——QL——

where? = T _andm, =
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F1G. 1. Comparison of theoretical and exact temperature fluctuations at x// = 0 (linear pressure variation).

or, using equations (39) and (41):

c, |dP| ™™ dP
| a0

i

If the pressure is linear in time |dP/df| =1 and
equation (40) follows. However, if dP/df # 1 the
effect on the gas temperature can be considerable, as
seen from Fig. 4 and 5 where plots of equation (70)
have been added for sinusoidal pressure variation.
Their agreement with the exact solution is again
excellent. Figure 6, finally, shows how little the mass
flow has been affected by the simplifications also for
this case.

Hz, 0) = t,(z,6) + (70)

ttm |
006

0-04
002

0
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4, CONCLUDING REMARKS

The analyses presented above demonstrate how the
equations governing the performance of cyclic re-
generators can be solved conveniently and accurately.
They also make it possible to draw a number of
valuable conclusions on the influence of physical
parameters, even without going through a detailed
calculation.

Consider first the relative duration of compression
and expansion. The symbol § had been defined as the
fraction of a full cycle during which compression takes

place. It is immediately obvious from equations (29)
and (52) that the exact value for § has only a minute

--- - Equations (39) and (40)
Numericai solution

T~
-0-02

-0-04
T —

-006

}_
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frmmmm e

F1G. 2. Comparison of theoretical and exact temperature fluctuations at x// = 0-1 (linear pressure variation).
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~=-= Equation (23)
m T Numerical solution
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FiG. 3. Comparison of theoretical and exact mass flux distributions at x// = 0-1 (linear pressure variation).

influence on the mean gas temperature and mean mass
flux through their boundary conditions. Furthermore,
the constant C, is evaluated from these equations.
From this it follows that the relative duration of
compression and expansion has also only insignificant
influence on the regenerator effectiveness. There is,
however, some effect on the average matrix tem-
perature (of the order of (20 ~ 1)t) as seen from
equations (27) and (53) and on the perturbations,
t and t_. However, it is imperative to keep in mind
equation (11), i.e. that the duration of flow reversal is
small compared to the duration of a half-cycle. The
above conclusions do not hold for the cases § ~ 0

tt,
006

004

=
1
1
|
|
'

and é ~ 1, which rarely occur in practical situations.

The distribution of the mass flux at the cold end
appears to be equally unimportant. In most practical
situations m,, will be so that |dg/df| < |dP/d6| even
if my # —dP/d0. If m is such that dg/df becomes
substantial there will be some influence on the re-
generator performance, however small. The average
gas_temperature and mass flow will be affected by
(m,P) only if Q_ varies rapidly with temperatures.
Even then_the influence will be negligible as
|myP| <€ (m,P) =0 if m, = —dP/d0). It is difficult
to estimate the impact on the average matrix tem-
perature. In general, however, also T will be little

——— Eauartions (39) ond 40

— Numericol solution
—-~— Equation (70)

FIG. 4. Comparison of theoretical and exact temperature fluctuations at x// = 0 (sinusoidal pressure
variation).
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T,
006
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0-02

-—-~ Equations (39) and (40)
Numerical solution
—-—- Equation (70)

-004

-006—

FiG. 5. Comparison of theoretical and exact temperature fluctuations at x// = 0-1 (sinusoidal pressure
variation).

changed as

1 dg

[m] do
The most surprising finding in the present analysis

is that the relative magnitude of the matrix heat
capacity turns out to be irrelevant. If m;, = —dP/d6,
the value for Q_ displays no influence whatsoever on
average properties and effectiveness. If m;, # —dP/df
and Q, < o = const, the average properties are
again uneffected while the effectiveness can be

<L

----- Equation (23)-
Numerical solution

calculated from
y =1 (m,P)

(1 - "])Q
o lom g . )
T, Y 0. G sy Y

It appears therefore that a positive value of (m,P)
can enhance the regenerator effectiveness. This effect
will be small, however, as |m,P| < 1. On the other
hand, there will be, of course, a substantial influence
on the matrix temperature perturbation ¢,, and hence
on t, as its amplitude is inversely proportional to the
heat capacity parameter Q.

F16. 6. Comparison of theoretical and exact mass flux distributions at x// = 01 (sinusoidal pressure
variation).
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It should be emphasized that the above conclusions
for the finite heat capacity case apply only to the
“rapidly cycling” regenerator, i.e. when

{é(meyjoz|/| d(mT)/é

or equivalently |t|/f < 1. From equation (40), it can
be estimated that

]

Let |1/ < O, it follows

. 72
g, S, -1 C

This condition is satisfied in many actual operating
situations. For instance, Figs. 1-6 (C, = @, = 100,
z, = 1, 1, = 5) demonstrate that (72) is indeed very
conservative. For extreme cases with the combination
of sufficiently large blow time, low temperature and
small heat capacity, the present analysis and conclu-
sions do not hold.

Acknowledgements - The study was conducted under the
support of the Lockheed Missiles and Space Company, and
many helpful discussions with Dr. A, P. Glassford of
Lockheed are particularly appreciated.

REFERENCES

1. W. M. Kays and A. L. London, Compuct Heat Ex-
changers. McGraw-Hill, New York (1964).

. B. H. Schultz, Regenerators with longitudinal heat
conduction, General discussion on heat transfer, Inst.
of Mech. Engrs and ASME (1951).

3. G. D. Bahnke and C. P. Howard, The effect of longi-
tudinal heat conduction on periodic-flow heat exchanger
performance, J. Engng Ind. 86A, 105-120 (1964).

4. P. A Rios and J. L. Smith, Jr., The effect of variable
specific heat of the matrix on the performance of thermal
regenerators. Ade. Cryogen. Engng 13, 566--573 (1967).

. S.N. Rea and J. L. Smith, Jr., The influence of pressure
cycling on thermal regenerators. J. Engng Ind. 89B,
563-569 (1967).

6. M. F. Modest and C. L. Tien, Analysis of real-gas and

matrix-conduction effects in cyclic cryogenic regenerators.
J. Heat Transfer 95C, 199-205 (1973).

7. W. Abramowitz and 1. A. Stegun (Eds.), Handbook o}
Mathematical Functions. National Bureau of Standards,
Applied Mathematics Series 55 (1964).

8. M. F. Modest, Theoretical analysis of the performance
of eryvgenic thermal regenerators subjected 1o rapidly
cycling flows, Ph.ID. Dissertation, Department of Mech-
anical Engineering, University of California, Berkeley,
California (1972).

(25

[

ETUDE THERMIQUE DE REGENERATEURS CRYOGENIQUES CYCLIQUES

Resume—On établit le systeme d’éguations aux dérivées partictles associées i leurs conditions aux limites
pour préciser les performances des régénérateurs soumis a des ¢coulements cycliques en tenant compte
d’effets généralement négligés comme les changements d'énergic internc du fluide dus aux pressions
cycliques et 4 la conduction longitudinale. On obtient des solutions exactes dans le cas d'une capacité
thermique de matrice infiniment grande. Dans le cas de capacité thermigue de matrice Hinie, Ja méthode des
perturbations est utilisée et a solution peut étre considérée comme exacte dans le régénérateur saul dans
les régions proche des limites. Les résultats sont contenus en général dans un systéme de trois équations
différentielles couplées qui peut étre résolu numderiquement. On présente néanmoins une solution analytique
pour le cas important d'une conduction thermique de mutrice négligeable.

THERMISCHE ANALYSE VON ZYKLISCH KALTEERZEUGENDEN REGENERATOREN

Zusammenfassung—Um das Verhalten von Regeneratoren. die periodisch wechselnden Stromungen
ausgesetzt sind, zu beschreiben, wurde ein System von partiellen Differentialgleichungen mit ihren
Randbedingungen aufgestellt, die sonst aligemein vernachlassigte Effekte, wie z.B. den inneren Energie-
austausch des Fluids infolge periodisch wechselnder Drucke und longitudinale Matrix-Leitung

beriicksichtigen.

Fiir den Fall einer unendlich grossen Matrix-Wirmekapazitit wurde cine exakte Losung getunden.

Fiir den Fall einer endlichen Matrix-Wirmekapazitat fithrt die Stérungsmethode zu einer Losung, dic

exakt fiir einen Regenerator ausschliesslich der Randzonen gilt. Die Ergebnisse sind in einem Satz von

drei gekoppelten einfachen Differentialgleichungen enthalten, die numerisch geldst werden miissen.

Fiir den wichtigen Fall der vernachlissighbaren Matrix-Wirmeleitung ist die Losung in geschlossencr
Form dargestelit.
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TEPMAYECKUN AHAJIN3 HAKJINYECKHX KPUOTEHHBIN
PETEHEPATOPOB

Annoranna—Ilonyyena cucreMa aupdepeHNUATEHEX YPABHEHUI B YaCTHBIX NPOU3BOXHBIX
C TPAHWYHEIMU YCJIOBUAMHU [JIA ONMCAHMA XADAKTEDUCTUK LMKIMYECKAX pereHepaTopoB.
B meit yunTteBaloTeA Takue 5QQeRTH, KOTOPHIMH 00LIYHO MPeHeSperaloT, a UMEHHO | UBMEHEHUE
BHYTpeHHell SHepruy KUIKOCTH MO BIMAHMEM HNepHOJMYeCKNX H3MeHeHWi TaBIeHHA W
NpORONLHAA TEIUIONPOBOZHOCTE MATpuILl. TOYHBIE pelleHHMA HOIy4YeHBl NJAA ciaydas Gecko-
HEYHO 60JIBLION TeINIOEMKOCTH MATPHUUBL. [JIA Cayyas KOHETHOI TeNI0eMKOCTH MATPUILE
UCTIONBb3YeTCA METOX BOBMYIIeHMI. IlojiydeHHEBIE penIeHMA MOMKHO CYMTATH TOYHBIMM [JIA
BCETr'0 pereHeparopa 3a UCKIIOYeHHMEM IpaHMYHHX obgacreii. B ofmem, pesyapTaTel o0benu-
HAIOTCA B CHCTEMY M3 TPeX CBABAHHBLIX OOLIKHOBEHHBLIX AU(depeHIUaIbHBIX YpaBHEHUH,
pewraemylo uuciaeHHo. OfHAKO, [IA BAKHOTO CiIydas NpeHeGpemMUMO Malofi TeNsIoNpOoBOA-
HOCTH JaeTCA aHAJNNTHYeCKOe pelieHue.
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