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Abstract-The system of partial differential equations, together with their boundary conditions, has been 
established to describe the performance of regenerators subjected to cycling flows, including commonly 
neglected effects such as internal energy changes of the fluid due to pressure cycling and longitudinal matrix 
conduction. Exact solutions are obtained for the case of an infinitely large matrix heat capacity. For the case 
of finite matrix heat capacity the method of perturbations is employed, and the solutions can be considered 
exact throughout the regenerator except for the regions near the boundaries. In general, the results are 
contained in a set of three coupled ordinary differential equations, which must be solved numerically. For 
the important case of negligible matrix heat conduction, however, a closed-form solution is presented here. 
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NOMENCLATURE 

regenerator cross-section; 
specific heat of matrix material; 
constant defined in equation (58); 
parameter defined in equation (10); 
integration constant; 
gas enthalpy; 
heat transfer coefficient; 
non-dimensional heat transfer co- 
efficient, equation (IO); 
thermal conductivity; 
heat transfer coefficient at cold end; 
parameter defined by equation (10); 
regenerator length; 
non-dimensional mass flux; 
mass flux; 
incomplete gamma function, equation 

(67); 
exponents for heat transfer coefficient; 
gas pressure; 
non-dimensional gas pressure; 
Prandtl number; 
integrated mass ffux at cold end; 
parameter defined by equation (10); 
gas constant; 
Reynolds number; 
Stanton number; 
time; 
first order temperature perturbation; 
temperature; 
internal energy; 
regenerator void volume, EA/; 

expansion volume outside cold end; 
average gas velocity; 
axial distance; 
non-dimensional distance: 

Subscripts 

?I, 

H, L, 

Superscript 

-, 

specific surface; 
constant defined in equation (66); 
ratio of specific heats; 
non-dimensional length of compression 
period: 
regenerator porosity; 
regenerator effectiveness; 
non-dimensional time; 
second order temperature perturbation; 
constant defined in equation (66); 
time span of regenerator cycle: 
density: 
non-dimensional temperature. 

matrix; 
values at cold end (x = 0), hot end (x = I); 
values at end of compression (high 
pressure), and of expansion (low pres- 
sure). 

(bar) integrated value over cycle. 

1. INTRODUCTION 

SINCE the first thermal regenerator was applied to the 
production of low temperatures at the end of last 
century, their use has become more popular. Due to 
their superior effectiveness and compactness compared 
to the conventional heat exchangers, they constitute 
the crucial elements in modem refrigeration devices 
used for the cooling of superconductors, infrared de- 
tectors, etc. While the concept of thermal regenerators 
is simple, the theory pertaining to the thermal 
performance is extraordinarily involved. Since the 
efficiency of a well designed regenerator is high 

17 



M. F. MODEST and C. L. TIEN 

compared to the efficiency of the total refrigeration The first terms in equations (I) and (2) describe the 
cycle. little effort had been made until recently to change of internal energy of gas and matrix. The 
predict its performance accurately. At very low second term in equation (1) stands for the change of 
low temperatures. however, the refrigeration cycles enthalpy of the gas flowing through the control 
become so ineffective that losses due to the regenerator volume. while the second term in equation (2) denotes 
must be minimized. With the increasing application the conduction along the matrix. The last terms in both 
of refrigeration at very low temperatures, more effort equations give the convective energy exchange 
has been devoted to the study of sophisticated theories between gas and matrix inside the control volume. 
by various investigators. for example [l-.4]. All these In general. the mass flux can be calculated at the 
investigations. however, are limited to the examination cold end (s = 0) and the temperatures of the gas 
of one particutar effect or another. neglecting other entering the matrix are known, so that the boundary 
important factors. conditions are 

A notable advance towards a rigorous theory ha\ 

been made by Rea and Smith [5]. improving earlier 
analyses by taking proper account of variable 

density. mass flux and heat transfer coefficient. 

Recently this theory has been extended by Modest 
and Tien [6] to include real-gas and matrix-condue- 

tion effects. which become particularly important at 
very low temperatures. The major shortcomings of 

these analyses are their approximate nature and the 
fact that they deal only with time-averaged properties. 
It is the purpose of this work to improve these 

analyses by presenting some exact analytical solut~onc 
to the governing equations. These solutions not only 

show in what situations the approximate analyses 
are applicable, but also provide some physical 
insight into the variation of temperatures and mass 
flux with time. 

cold end I = 0: 

rir(0. f) = r-ll.‘w(O, t) = lir”(f) 

T(0. r) = 7,) = constant during expansion 
(41 

hot end .I = 1’ 

T(I. t I = Tt = constant during compression. 

I’urthermore, for a steady cyclic regenerator 

&X, t) = Q(x, t + n) (54 

where (h stands for any dependent variable and n 

denotes the time span of a full cycle. It is obvious from 
equation (2) that the system requires two additional 
boundary conditions in T,,,. They can be easily 
estimated. however. Also, it wifl be shown later how 
they can be conveniently eliminated without any 
significant loss of accuracy. 

The following dimensionless variables will now 
be introduced 

7 1’ ri7 tk 

2. GOVERNING EQUATIONS 

F‘or the development of the governing equations 

the following basic assumptions are made: (1) The 

gas behaves like an ideal gas, (2) Pressure drop along 

the regenerator is negligibly small. (3) Thermal 
conduction through the gas in axial direction is 

negligible, and (4) Wall effects and matrix inhomo- 
genuity are insignificant (i.e. the problem is one- 
dimensional). Under these conditions the governing 

equations are (IS, 6]: 

Gas energy : 

Matrix energy: 

- & It,(T - T,,) = 0 (2) 

Gas continuity: 

For an ideal gas equations f 1) to (3) reduce then to [6] : 

Gas energy : 

(7) 

Matrix energy: 

Gas continuity: 
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where 
form without any loss of generality. Let 

Q ~ Y - 1.1 - f2 PnG-cl 
m 

- -7-2&r-PJ Y 
h, = Km-“l-‘z-“zIml, (13) 

so that 
K =Y-1.1-t +ll=o 

n 2(p, - p,) 12 zf 
(10) 

Y t H(z, 0) = C,i?i”‘-1S”2jm) = R(z)$$ (14) 

ff=Y-l m -._. TcT,,K h .J_C,J where the average values EI and 5 are defined by 
Y 6 2(P, - P,) K iii = $lrnld@ and 7 = $zdB. (15) 

In equation (9) the assumption has been invoked that 
Equations (7H9) with H(z, e) defined by equation (14) 

a P 

0 

1 dP P 8~ 1 dP ---_N_- form the system of equations that will be investigated -- 
ae T =5ds 3ae-fde 

(11) m the following. The pertinent boundary conditions 
are: 

where z is the gas temperature integrated over a full 
cycle. A simple order-of-magnitude test shows that 

cold end z = 0: 

this simplification is justified because m(0, 0) = m,(B) = rit,(0)/iG, 

1 dP P & 

i 

APT 5 __ -----‘_z_ 
z de T2ae P AT - A7 

and for a highly effective regenerator the temperature 
swing of the gas in time is very small compared to the 
absolute temperature. However, during a short 
interval right after flow reversal, dP/dB 2 0 and 
&/a0 # 0, so that equation (11) becomes invalid at 
this instant. This is the reason for the singularity that 
appears in the solutions for the gas temperature z at 
times of flow reversal (cf. equations (25) and (40)). 

The heat transfer coefficient is usually correlated 

by Cl1 

St Pr# = a Re” 

7(0,0)=1, 6ceGi 

hot end z = zI: 

z(z,, e) = 71, 0 d e G 6 

(16) 

where 6 is the fraction of x during which the gas is 
compressed (gas flows from hot to cold end) and (1 - 6) 
is the expansion interval (gas flows from cold to hot 
end). Here the further assumption has been made that 
flow reversal occurs everywhere in the regenerator at 
the same instant. This follows readily from equations 
(7) and (9) in conjunction with the definition for the 
heat transfer coefficient H(z, 0) and the assumption 
for negligible pressure drop. 

It is customary to characterize the regenerator 
performance by its ineffectiveness defined as 

or 

h, = K Imln1?‘2 
l--q= 

total losses over one cycle 

ideal heat exchange ’ 

where (12) 

K = a $ (G)“’ Pr*, n1 = 1 +n. 
h 

The subscript “0” refers to conditions at the cold end, 
while the term Y* accounts for the temperature 
dependence of the heat transfer coefficient. The values 
for the constants a and n depend on the matrix and 
can be found in the literature. For example, Rea and 
Smith [S] listed a = 0.71 and n = -0~41 for a bed 
of spheres. It is obvious that equation (12) is an 
approximation since the exact relationship for the 
time dependence of h, for a fast cycling flow is not 
known and cannot correlate the heat transfer co- 
efficient accurately for all situations (e.g. at flow 
reversal ti = 0 but h, > 0). The correlation for h, can 
therefore be adjusted slightly into a more convenient 

Losses are due to conduction and the fact that the 
gas temperature oscillates around the matrix tem- 
perature. Thus 

1-V 

(@hdt( + (1 - W&(~~,IWdt 
= dn 

dI~~lhld’-d[.!~~lh,df-[~.4,jpudr]~ 

. t17l 

This expression can be simplified to 

3. SOLUTIONS 

In the following four different cases are investigated. 
The first two deal with an infinitely large matrix heat 
capacity (Q, + CD), first with a particularly simple 
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boundary condition for the mass flux at the cold end, 
~1~). and then with the general case. These results are 
exact solutions to the slightly simplified equations 
(7k(9). The last two cases treat the finite heat capacity 
problem (Q, < -L I. first without and then with 
longitudinal matrix conduction. These results are 

obtained by the method of perturbations, and can he 
considered exact throughout the regenerator with the 
exception ofthe regions near the boundaries. Through- 
out the analysis it has been assumed that Q, = Q,(?,,) 

and Km = KJ?,) only. Furthermore. the ratio of 
specific heats. ;‘, was treated as constant. although the 
theory is easily extended to a variable 3’. 

In general. the analyses result in a set of three 
coupled ordinary differential equations which must 
be solved numerically. It will be seen, however. that 

a closed-form solution is possible if conduction is 
negligible and if the heat transfer coefficient is 
independent of temperature. Both assumptions appear 

to be reasonable for many practical applications. 

Infinite mutrix heat cupucitl 

In many regenerator applications. a gas with a 
relatively small heat capacity flows through a matrix 

of very large capacity, resulting in a large value for the 
parameter Q, in equation (8). In this case the matrix 

absorbs the energy transferred to it by the gas easily 
without any significant temperature change. In the 

ideal case of an infinitely large heat capacity (Q, + XC) 
the matrix temperature becomes independent of time 
so that r,,, = r,,,(z) only. and equation (8) must be 

replaced by its cyclic integral 

It is advantageous to replace the variables m and 
r by fi. ?. and t. where the perturbation term t is 

defined as 

r(z. .9) f T(z) + t(z, 0). (20) 

It follows from the definition of Z that 

4 t df) = 0. (21) 

To relate i+i to rn consider continuity equation (9). 
Integration results in 

and 

is constant it obviously represents an excellent 
approximation as is easily seen from 

(24) 

where the subscript C6 denotes properties in the 

volume outside the cold end of the regenerator. Even 

for the general case, both functions have some common 
features indicating that they are similar to some degree. 
From the assumption of negligible pressure drop and 
equation (9) it follows that flow reversal occurs 

everywhere at the same instant, i.e. m, = .- dP,!d(l = 0 
at times of flow reversal (0 = 0, 6, 1). Between those 
times both functions grow in absolute value to some 

maximum and then diminish again. Furthermore. 
from equation (23). their integrated values (zeroth 
moments) are identical, i.e. 

In the following the solution for this simple case is 
presented. It will be shown later that this result is 
easily extended for m, # -dP/dB. 

If the matrix temperature is constant in time, only 

changes in mass flux and pressure can cause variation 
in gas temperature. If ti and p vary at the same rate, 

the temperature difference between gas and matrix 
will be constant at any location during compression 
and expansion intervals, provided the heat transfer 

coefficient is of the form of equation (13). Then the 
solution for r will have the form 

T(Z, N) = f(z) + t,(z) 0 < 0 < 0 
(25) 

T(Z.0) = F(z) - f,(Z) 6 < fi i i 

It is obvious that a step in gas temperature at times of 
flow reversal is physically impossible. The reason for 
the introduction of this singular point is. of course, 
the assumption made for equation (9). Introducing 
(25) reduces equations (7) and (19) to 

A particular simple situation arises if the mass flux 
at the cold end is such that m, = -dP/dB. In reality. 
of course, this will not necessarily be the case. However. 
if the volume outside the cold end of the regenerator 

= Cl%“‘?” (5 - t,) (27) 

2&t, = 2(1 - d) t, 

(28) 
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where C, is an integration constant to be determined 
by the boundary conditions. Usually C, % 1 and 
126 - 11 $ 1, so that the second-order term in 
equation (26) can be dropped. Furthermore, in a 
highly efficient regenerator /5-r,/el or 
dr,Jdz 2 d?/dz. Then 

which, coupled with equation (22), must in general 
be solved numerically, subject to the boundary 
conditions 

cold end z = 0: 

iii=1 (301 

~=l+t,=l+*6[C,-Km~] (31) 

hot end z = zr: 

t’ = Tf - t, = ?t -2(1-6)[C,-K,~]. (32) 

Thus the solution for ‘z,,, has been decoupled from the 
solution for ? and iii. Once Z and iii are known, Z, is 
readily calculated from equation (25). Again the 
derivative in r, can be replaced by a derivative in i, 
thus avoiding to estimate boundary conditions for 
the matrix temperature. 

The regenerator ineffectiveness follows from equa- 
tion (18) to be 

l--Y/= 2Cz 
ZI17[ - 1 - 2,/y’ (33) 

If m, # -dP/dG the solution is similar. A second 
perturbation term S(z, 0) is added to equation (25) 
so that 

r(z, 0) = 1’(z) + tl(z) + I!J(z, 0) 0<0<6 
(34) 

r(z, 0) = F(2) - tz(z) + S(z, e) ked 

where ?(z)=$(z-9)dBr?-i. As ji]~Z one 
can replace f by Q in equations (9) and (13). Equations 
(22), (23) and (2+-o-(3) then continue to hold (with Z’ 
instead off), while 9 turns out to be 

Finite matrix heat capacity 
In many applications, the matrix heat capacity is 

not large enough to render the matrix temperature r, 
a function of position only, i.e. the temperature 
fluctuation of the matrix is such that it cannot be 
neglected. It is, therefore, of importance to determine 
how the results of the preceding section are affected 
by a finite Q,. First the somewhat simpler case of 
negligible matrix heat conduction will be treated. 
These results will then later be extended to include 
conduction effects. 

For the analysis, the temperatures will be broken 
up according to equation (201, so that 

T(Z, 0) = f(z) + t(z, 0) (20) 

and 

z&Z, 8) = ?,(z) + tm(z, 0). (36) 

With this definition and Km s 0 equations (7) and (8) 
can be written as 

at 
‘dPt~(mi)+Q,y$=O 
y d0 a2 (37) 

and 

at 

where the term a(m)/& in equation (37) has been 
dropped as it is small compared to a(m?)/az. However, 
neglecting this term reduces the order oft. Therefore, 
while equations (37) and (38) describe the regenerator 
performance accurately throu~out the interior of 
the regenerator, this might not be true very close to 
the boundaries, as the fluctuation boundary condition 
for t cannot be satisfied. 

The solutions to this system of equations are: 

dq dp m(z,3) =Jjj - i-E% (23) 
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Thus from comparing equation (7) with (37) and (8) 
with (38); respectively: 

has been used. The upper sign in equation (40) is valid and 
during compression (0 < 0 < 6) the lower sign during 
expansion (6 <: 0 < 1). The averaged properties must C?l? 

be found from the ordinary differential equations 
Q,$ - C,m”‘-‘?“‘lm)(3 - ?YJ 

_dm _ 
r-&=1 (22) 

subject to the boundary conditions 

cold end z = 0: 

%=l 

1 

I 
f = 1 - _~___ I t dtI 

l-6 
d 

hot end z = z,: 

where the terms S(mS)/?z and Ctt,,, t Urn)/& have 

been neglected, as they are anticipated to be small 

compared to ?/i?z(mt) and d?,jdz. 
(41) The results are 

i 

d __~ 

z (mt) 

while equations (41) and (42) must be replaced by 

and 

(45) 

For the evaluation of the regenerator effectiveness 
equation (33) remains valid. subject to the boundary conditions 

To include the effects of matrix conduction. the cold end z = 0: 
approach is similar to the one described earlier. 
Equations (20) and (36) are redefined as rn=l 

r(z, 0) = Z(z) + t(z, 0) + l!J(z, 0) (46) 1 

z,(z, 6) = Z,(z) + t,(z, @) + :JJz, 0). (47) TV 1 -$, (t+Q)dO 

Here t and tm have been evaluated above and describe 
i * 

the major perturbations of z and z,,, caused by mass 
flux and pressure variations, and the 9 and Q,,, are 
minor perturbations due to matrix conduction effects. 

Z , + 26 c 
2 

_ K gE + y - l hlP) 
“dz I;e, 

(52) 

(53) 

(54) 

(55) 
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hot end z = z,: 

d 

assuming that under these conditions also the matrix 
heat capacity can be treated as constant. This equation 

? = rr - f 
s 

(t + 9) de z 1 - 2(1 - 6) 
must be solved in combination with 

0 $!!!=~ 

dz (22) 

x C 
2 

_ K 3 + Y - 1 (ml+? 
“dz ye,’ 1 (56) subject to the boundary conditions 

Again d?,,,fdz can be approximated by d?/dz in 
equation (52) in order to decouple equation (53) from 
equations (22) and (52). The average temperature of 
the matrix, ?,,,, can then be calculated from equation 
(53), although the calculation of the last two terms in 
that equation will be rather tedious. However, a 
simple order-of-magnitude test reveals that 

Furthermore, if dq/dQ = 0, the last term reduces to 

(~&r)) = -46(1 - S)-+%) (57) 

cold end z = 0: 

ifi= 

?=l 

hot end z = zr: 

? = z,, 

(59) 

which have been simplified by dropping the small 
terms for the sake of clarity. 

The axial distance is easily eliminated from equa- 
tions (22) and (58) to yield 

f = fi-(Y--1)/Y exp {+‘)j n#O (60) 

if the pressure is such that the average pressures for 
both half-cycles are equal. Using this, equation (53) 

7 = @(Y-1)/Y n = 0. (61) 

reduces to equation (27). 
Again, the expression for the regenerator ineffective- 

With this expression equation (22) can be solved for 

ness does not change, so that equation (33) remains 
the average mass flux iii and gas temperature ? as 

valid also for this case. 
functions of longitudinal distance z to give 

Explicit analytical solution ,for negkgible conduction *= ~A4J1[Mv(/3) - n/31-‘e-Bz] I’” n # 0 (62) 
It has been shown how the partial differential 

equations governing the performance of thermal 
regenerators can be reduced to ordinary differential 
equations. In general, these equations are still so 
complex that they can only be solved numerically. 
There exists, however, an important special case when 
an explicit analytical solution is possible. This is the 
case if longitudinal matrix conduction, as well as the 
temperature dependence of the heat transfer co- 
efficient, is negligible, i.e. if K,,, = n, = 0, which is 
approximately true for moderate temperatures. 

Consider equations (26) or (41). If K, g 0 and 
1*x E 1 they can be rewritten as 

--+j$!!=Cjg Y-l 

Y dz (58) 

where 

n=n;- 1 and C = C,Cz 

7 = 1 ;M;‘pf@) _ ngl-ve-pz] I -(y-l)‘ny 

x exp {p - M;‘[M$?) - n/l-’ emBz]} 

n#O 

and 

m = 1 + c+ 1 

1 [ 

y - 1 z c+r-LY 

Y I> 
n=O (64) 

c-(Y - 1)/Y 

? = 1 + 

{ [ 

c + I y ; 1 z‘ c+l-(y-l)h 

Ii 

n = 0. 

(63) 

(65) 

or 
Here the abbreviations /l and v have been introduced 
as 

C 
1 

C 
2 -- p = -Cjn and v= -.- 

1 y-l+n-1 

n Y 
___ (66) n 



44 M. F. MODEST and C. L. T’IEPU 

while the incomplete gamma function MV((B) has been 
defined to be 

In equations (62)-(65) the first two boundary condi- 
tions have been employed. The last one is needed to 
evaluate the constant /I (or C, C,), which must be 
done by trial and error. While some tabulations of the 
incomplete gamma functions can be found in the 
literature [7], an extensive listing for values of $5 
relevant for regenerator applications has also been 
given [S]. 

Comparison with exact solution 

A computer program for the exact numerical 
solution of the general equations (l)-(3) without the 
simplifications (11) and (13) has been developed to 
test the theories presented in the previous sections. 
In particular, it will be seen what influence the 
omission of the term [(P/r2)(~7/h!9)] in equation (9) 
exerts on the solution, and whether, for finite Q,, 
dropping a(mt)/Sz in equation (37) really only affects 
the regions close to the boundaries. 

Due to the extremely unfavorable boundary condi- 
tions, only few approaches to a numerical solution are 
conceivable. The one employed here approximates 
time derivatives by backward differences, while 
directional derivatives are written as forward differ- 
ences during compression (0 < 0 < 6) and backward 
differences during expansion (6 < 8 < 1). An initial 
distribution of temperatures and mass flow is guessed 
for a certain time (for example, by the methods 
described earlier in this paper) and new values are 
calculated time step after time step. Physically this 
method calculates the cool-down of the generator 
from the initial (or approximate) temperature dis- 
tribution until the quasi-steady state is reached. 
Obviously, a accurate initial distribution is crucial. 
Usually, the cool-down time for a compact refrigerator 
operating according to the Stirling or Gifford- 
McMahon cycles is about one to two hours. Thus. 
if an accurate initial profile is employed, cool-down 
time can be expected to be of the order of a few 
minutes. Therefore, a few hundred iterations will 
usually be necessary, and somewhere between 1 and 5 
min of computer time will be needed, even with a 
high-speed computer like the CDC 6400, which was 
used here at Berekeley. 

To test the previously derived theories this com- 
puter program was employed for the special case of 

6 = $, 
dP 

K, = 0 and m, = - zg 

with 

(‘, = Q, = 100. z1 = 1 and T( = 5 

‘Two different pressure histories were investigated: 

(i) linear (“saw-tooth”): 

P = P,. + (1 -- fj), ; < 0 i- 1 

(ii) sinusoidal: 

P=B+~cos27& O<.l)c I. 

If the average values fi and ? = Zm are evaluated from 
equations (22) and (41) it was found that they 
practically coincide with the ones found by the 
numerical solution (deviation <i per cent). Figures 
l-3 demonstrate how equations (39) and (40) compare 
to the exact numerical solution for case (i). Figs. 4-6 
for case (ii). 

First consider Fig. 1. which depicts the cold end 
(z = 0) for case (i). As expected, agreement is not too 
good during expansion as the boundary condition for 
t had been neglected in the analysis. However, 
agreement for the compression half-cycle is excellent. 
This figure also demonstrates how the singularity in 
equation (40) which was introduced by neglecting 
[(P/7') (Bz/?H)], is overcome by the numerical solu- 
tion. To show how minute the influence ofthe neglected 
boundary condition is, the temperature histories have 
been plotted for a point inside the matrix-but still 
close to the boundary-at x/l = 0.1. Figure 2 shows 
the excellent agreement between theory and exact 
solution, the only deviation being at times close to 
flow reversal. The same is true for all other locations 
throughout the regenerator. Figure 3 shows the time 
history of the mass flow at the location x/l = 0.1. 
Obviously, what has been said about the temperatures 
is also true for the mass flow. 

Now consider Fig. 4, depicting time histories at 
the cold end for case (ii). While agreement for the 
matrix temperature is fairly good, this is not true for 
the gas temperature (except for the fact that values 
integrated over half-cycles more or less coincide, 
ensuring agreement for the solution of average 
properties). The reason for this deviation is that 
different definitions for the heat transfer coefficient 
have been used. To prove this, introduce the original 
definition for h, in equation (38). Then 

Q”, ;!r$ - C,#ji”‘?“2 g “’ (t - t,) = 0 I ! (68) 

where ? = f,,, and m, = - dP/dV have been used. Thus 
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f, f, 

0.06 
---- Equations (39) and (40) 
- Numerical solution 

O.OSF- 

FIG 1. Comparison of theoretical and exact tempewture fluctuations at x/l = 0 (linear pressure variation). 

or, using equations (39) and (41): 

t(z, 0) = t (70) 

If the pressure is linear in time IdP/dBI s 1 and 
equation (40) follows. However, if dP/dB # 1 the 
effect on the gas temperature can be considerable, as 
seen from Fig. 4 and 5 where plots of equation (70) 
have been added for sinusoidal pressure variation. 
Their agreement with the exact solution is again 
excellent. Figure 6, finally, shows how little the mass 
flow has been affected by the simplifications also for 
this case. 

4. CONCLUDING REMARKS 

The analyses presented above demonstrate how the 
equations governing the performance of cyclic re- 
generators can be solved conveniently and accurately. 
They also make it possible to draw a number of 
valuable conclusions on the influence of physical 
parameters, even without going through a detailed 
calculation. 

Consider first the relative duration of compression 
and expansion. The symbol 6 had been defined as the 
fraction of a full cycle during which compression takes 
place. It is immediately obvious from equations (29) 

and (52) that the exact value for 6 has only a minute 

f, f/n 
0.06 

--- - Equations (39) and (40) 

- Numerical solution 

-0.06/- 

FIG. 2. Comparison of theoretical and exact temperature fluctuations at x/l = 0.1 (linear pressure variation). 
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II Equotlon (23) 
Numerical soiutlon 

FIG. 3. Comparison of theoretical and exact mass flux distributions at ?c;l 0.1 (linear pressure varlatlon) 

influence on the mean gas temperature and mean mass 
flux through their boundary conditions. Furthermore, 
the constant C, is evaluated from these equations. 
From this it follows that the relative duration of 
compression and expansion has also only insignificant 
influence on the regenerator effectiveness. There is. 

however, some effect on the average matrix tem- 
perature (of the order of (26 - 1) t) as seen from 

equations (27) and (53) and on the perturbations. 
t and tm. However, it is imperative to keep in mind 

equation (1 l), i.e. that the duration of flow reversal is 
small compared to the duration of a half-cycle. The 

above conclusions do not hold for the cases 6 21 0 

p, t* 
k 

O-06 b -- - Eauarions (39) ond (40) 

/r<y_+q- I - Numerical solution 

and 6 2: 1, which rarely occur in practical situations. 

The distribution of the mass flux at the cold end 
appears to be equally unimportant. In most practical 
situations m, will be so that ldq/dOl << ldP/dOl even 
if m, # -dP/dO. If m, is such that dqjd0 becomes 

substantial there will be some influence on the re- 
generator performance, however small. The average 
gastemperature and mass flow will be affected by 

(m,P) only if Q, varies rapidly with temperatures. 
Even then the influence will be negligible as 

1 m,P / << l((m,P) = 0 if m,, = - dP/dO). It is difficult 
to estimate the impact on the average matrix tem- 
perature. In general, however. also Sm will be little 

Equation C 70) 

FIG. 4. Comparison of theoretical and exact temperature fluctuations at x/i ~~~ 0 (smusoldal pressure 
variation). 
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---- Equations (39) and (40) 
- Numerical solution 

Equation (70) 

FIG. 5. Comparison of theoretical and exact temperature fluctuations at .x/l = 0.1 (sinusoidal pressure 
variation). 

changed as 

The most surprising finding in the present analysis 

is that the relative magnitude of the matrix heat 
capacity turns out to be irrelevant. If m, = -dP/dB, 
the value for Q, displays no influence whatsoever on 
average properties and effectiveness. If m, # - dP/dt? 
and Q, < cc = const., the average properties are 
again uneffected while the effectiveness can be 

m c ___-_ Equotion (23). 
- Numerical solution 

I.5 

calculated from 

(1 - td,, (m,P) 

(1 - rl), 
= 1 - ~~Qm_c,cQm 3 co)’ (71) 

It appears therefore that a positive value of (m,P) 

can enhance the regenerator effectiveness. This effect 
will be small, however, as ImoP/ < 1. On the other 
hand, there will be, of course, a substantial influence 

on the matrix temperature perturbation t,,,, and hence 
on t, as its amplitude is inversely proportional to the 
heat capacity parameter Q,. 

FIG. 6. Comparison of theoretical and exact mass flux distributions at x/l = 0.1 (sinusoidal pressure 
variation). 
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It should be emphasized that the above conclusions 
for the finite heat capacity case apply only to the 
“rapidly cycling” regenerator, i.e. when 

/ F(mt)ic7z/i’j t?jm?),e! 4 i 

or equivalently / t l/S G 1. From equation (40), it can 
be estimated that 

Let /t/T -e 0.1, it follows 

1 z 4 

?;i,T” 
___L_ - _.I, 
S(r, - 1) c, 

This condition is satisfied in many actual operating 
situations. For instance, Figs. I-6 (C, = Q, = 100. 
z2 = 1, z1 = 5) demonstrate that (72) is indeed very 
conservative. For extreme cases with the combination 
of sufficiently large blow time, low temperature and 
small heat capacity, the present analysis and conclu- 
sions do not hold. 

4L~ktloN icd~/c’tllclil.\ ‘fhc httrdy was conduited under the 
support of the I.ockheed Missiles and Space Company. and 
many helpful discussions with Dr. A. P. Gl:rssfnrd of 
Lockheed are p~~rti~lli~lrl~ appreciated. 
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THERMISCHE ANALYSE VON ZYKLISCH K~~TEERZE~JGEN~~N REGENERATOREN 

Zusammenfassuqg--Urn das Verhalten von Regeneratoren. die periodisch wechselnden StrBmungen 
ausgesetzt sind, zu beschreiben, wurde ein System von partiellen Differentialgleichungen mit ihren 
Randbedingungen aufgestellt, die sonst allgemein veruachllssigte Effekte. wie z.B. den inneren Energie- 
austausch des Fluids infolge periodisch wechselnder Drucke und longitudinale Matrix-Leitung 
beriicksichtigen. 
FOr den Fall einer unendlich grossen Matrix-Wdrmekapazit;ii wurdc eme exakte Liisung geftmdtn. 
Fti den Fall einer endlichen Ma~ix-w~rmeka~dzit~t fiihrt die St~rungsmethode N einer Liisung, die 
exakt fiir einen Regenerator ausschliesslich der Randzonen gilt. Die Ergebnisse sind in einem Satz van 
drei gekoppelten einfachen Difirerentialgieichungen enthaiten. die numerisch g&at werden miissen. 
Fiir den wichtlgen Fall der vernachl~ssiel~,lrcn Matrix-WBrmelcitung ist die LOsung In geschlossencr 

Form dargestellt. 
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TEF’MFIECHH~ AHAJIKI LJWUIINECHHX HPBOrEHHbIA\ 
PEFEHEPATOPOR 

AHHoTaqaJr-HonyqeHa CLlCTeMa ~IU&#epeH~ElaJIbHbIX ypaBHeHMii B YaCTHbIX IIpOM3BOHHbIX 

C rpaHWIHbIM0l yCJIOB&lHMH AJIR OIIHC;LHI'lfI XapaKTepHCTkIH IJGiHJIWIeCEUIX pereHepaTOpOB. 

BH~~~YYMT~IB~I~TCRT~KH~~~~~KT~I,HOTO~~IMLIO~~I~HO~~~H~~~~~~I~T,~MW~HHO:~~~M~H~HM~ 

BHyTpeHHeii 3Heprtlll WHnHOCTH IIOX BJIklRHPIeM IIepJlO~MW'CIEMX KWIeHeHI'lfi naBJIeHIWI If 

IIpOJJOJIbHaR TeIIJIOIIpOBOAHOCTb MaTpEIIJbI. ToYHbIe peIIIeHlWI IIOZIyYeHbI &WI CJIySUI Remo- 

HeYHO 6OZIbIIIOi TeIIJIOeMKOCTkl MaTpAqbI. ,$IH C.-Q'%WI KOHeYHOir TPIIJIORVIKOCTM MaTPEIqbl 

MCIIOJIb3yeTcR MeTOn BO3MyIIJeHHti. nO.lIyqeHHbIe peIlIeHmcI \IOzf(IIO CqIITaTE. TOqHbIMM AJIH 

Bcero pereHepaTopa 3a mmmeHmen1 rpaEwIEIbIx 06;IacTefi. n 06WeM, pe3y~bTaTbI 06%eRM- 

HFIMTCR B CPICTeMy It3 TpeX CBFI3aHHbIX 06bIKHOBeHHhIX AlI(X)~epearlllanbHbIX ypaBHeHElii, 

peBrae>Iylo wrcmeHB0. OaHaKo, finfi BamIoro cnyyan npeae6pelrcmlo Manofi Temonponog- 

~ocT51 ,qaeTcFi aHamTmecI<oe perueErile. 
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